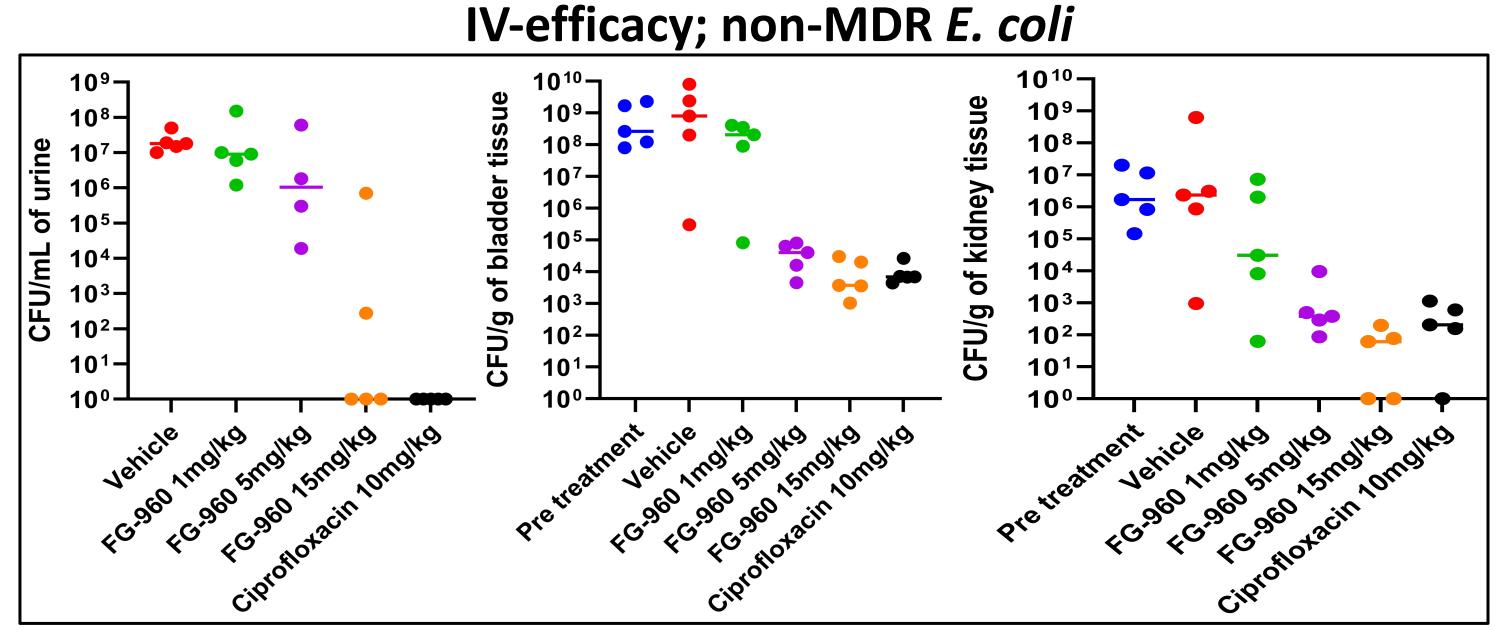
Advanced preclinical in vitro and in vivo characterization of a novel, non-hydroxamate-based LpxC inhibitor for the intravenous and oral treatment of multidrug-resistant Enterobacterales Medicines

J. Munguia, K. Taganov, S. Agarwalla, D. Martin, J. Fan, D. Lonergan, D. Puerta, Z. Zimmerman, and A. Tomaras

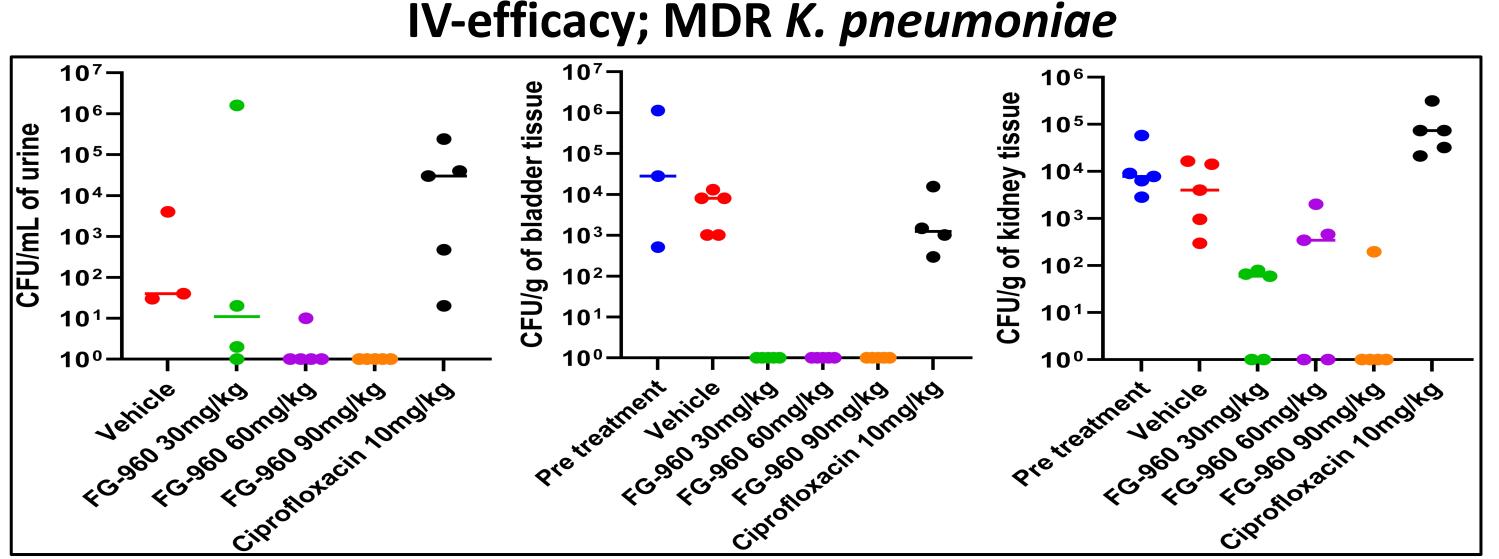
Blacksmith Medicines, Inc. San Diego, CA, USA


Abstract

LpxC is an essential metalloenzyme that Gram-negative bacteria require for outer membrane biosynthesis. Previous antibacterial efforts have focused on hydroxamatebased small molecules to engage LpxC's catalytic zinc. Unfortunately, these previous attempts have been hampered by safety liabilities. Leveraging its metalloenzyme inhibitor platform, Blacksmith has identified FG-960, a non-hydroxamate-based LpxC inhibitor with strong in vitro and in vivo profiles against MDR Enterobacterales, and is currently being advanced as a treatment for urinary tract infections (UTIs).

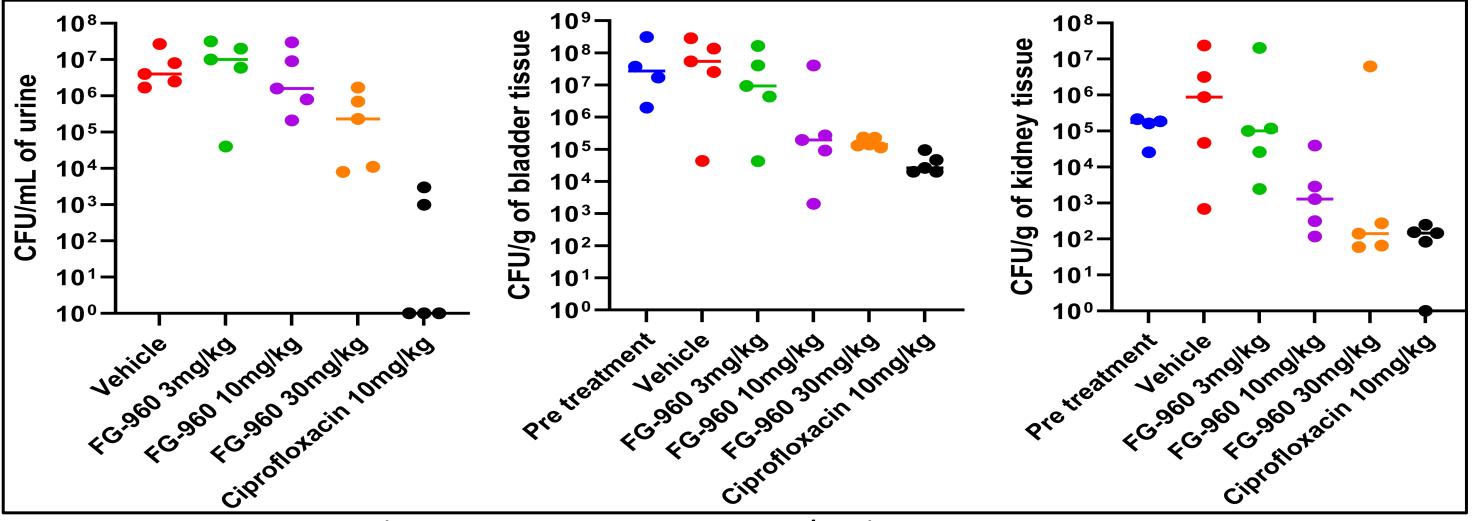
FG-960 is highly-potent against the LpxC enzyme (*E.coli* $IC_{50} = 1$ nM), and has strong activity against panels of contemporary MDR and non-MDR whole cell Enterobacterales isolates (MIC₉₀ = 4 μ g/ml; n= 973 strains). Static time kill studies demonstrate FG-960's rapid bactericidal activity, with regrowth suppression evident at concentrations \geq 2X MIC. When evaluated in standard frequency of resistance assays, FG-960 shows spontaneous resistance emergence at frequencies consistent with historical LpxC inhibitors (1x10⁻⁸-1x10⁻¹⁰) at 4X MIC against multiple MDR and non-

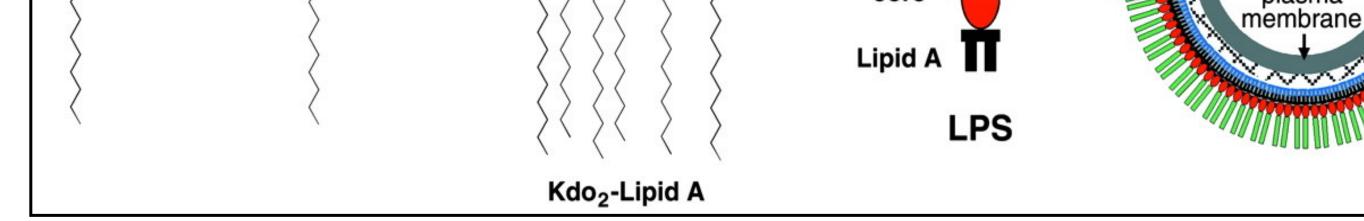
Е. coli (n міс₅₀ 0.5	=108)	K nnoui	maniaa							
	<i>E. coli</i> (n=108)		<i>K. pneumoniae</i> (n=107)		<i>K. oxytoca</i> (n=56)		<i>K. aerogenes</i> (n=52)		<i>P. mirabilis</i> (n=54)	
0.5	MIC ₉₀	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	
	1	0.5	4	1	2	0.5	2	1	4	
0.06	0.25	0.12	0.25	0.12	0.25	0.12	0.25	≤0.03	0.06	
0.06	>8	0.06	>8	0.06	>8	0.12	>8	≤0.004	300.0	
≤0.06	64	≤0.06	64	≤0.06	0.25	≤0.06	0.12	≤0.06	4	
0.015	0.03	0.03	0.06	0.03	0.03	0.03	0.06	0.12	0.12	
8	16	2	16	2	16	32	>32	1	8	
16	32	64	>64	32	64	64	>64	>64	>64	
2	16	4	32	2	128	4	32	0.25	1	
≤0.12	>16	≤0.12	>16	≤0.12	4	≤0.12	0.25	≤0.12	>16	
<i>C. freundii</i> (n=52)		<i>C. koseri</i> (n=54)		<i>E. cloacae</i> (n=52)		<i>M. morganii</i> (n=50)		S. marcescens (n=51)		
MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀	
MIC ₅₀	MIC ₉₀	MIC₅₀ 0.5	MIC ₉₀	MIC ₅₀	MIC ₉₀ 2	MIC ₅₀ 2	MIC ₉₀ 4	MIC ₅₀	MIC ₉₀ 1	
									<mark>МІС</mark> ₀₀ 1 0.5	
1	4	0.5	1	1	2	2	4	0.5	1	
1 0.12	4 0.5	0.5	1 0.12	1 0.25	2	2 0.06	4 0.25	0.5 0.25	1 0.5	
1 0.12 0.25	4 0.5 >8	0.5 0.06 0.06	1 0.12 0.12	1 0.25 0.5	2 1 >8	2 0.06 0.06	4 0.25 4	0.5 0.25 0.5	1 0.5 >8	
1 0.12 0.25 ≤0.06	4 0.5 >8 4	0.5 0.06 0.06 ≤0.06	1 0.12 0.12 ≤0.06	1 0.25 0.5 ≤0.06	2 1 >8 0.5	2 0.06 0.06 ≤0.06	4 0.25 4 2	0.5 0.25 0.5 ≤0.06	1 0.5 >8 2	
1 0.12 0.25 ≤0.06 0.03	4 0.5 >8 4 0.06	0.5 0.06 0.06 ≤0.06 0.015	1 0.12 0.12 ≤0.06 0.03	1 0.25 0.5 ≤0.06 0.03	2 1 >8 0.5 1	2 0.06 0.06 ≤0.06 0.06	4 0.25 4 2 0.12	0.5 0.25 0.5 ≤0.06 0.06	1 0.5 >8 2 0.12	
1 0.12 0.25 ≤0.06 0.03 32	4 0.5 >8 4 0.06 >32	0.5 0.06 0.06 ≤0.06 0.015 2	1 0.12 0.12 ≤0.06 0.03 4	1 0.25 0.5 ≤0.06 0.03 >32	2 1 >8 0.5 1 >32	2 0.06 0.06 ≤0.06 0.06 >32	4 0.25 4 2 0.12 >32	0.5 0.25 0.5 ≤0.06 0.06 >32	1 0.5 >8 2 0.12 >32	
	0.06 .015 8 16 2 0.12 0.12 C. freu	0.06 64 .015 0.03 8 16 16 32 2 16 0.12 >16	0.06 64 $≤0.06$ $.015$ 0.03 0.03 8 16 2 16 32 64 2 16 4 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 3 3 4 3 3 4 3 3 4 3	0.06 64 ≤ 0.06 64 0.015 0.03 0.03 0.06 8 16 2 16 16 32 64 >64 2 16 4 32 0.12 >16 ≤ 0.12 >16 C. freundii	0.06 64 ≤ 0.06 64 ≤ 0.06 0.015 0.03 0.03 0.06 0.03 8 16 2 16 2 16 32 64 >64 32 2 16 4 32 2 0.12 >16 ≤ 0.12 >16 ≤ 0.12 C. freundiiC. koseriE. clo	0.06 64 ≤ 0.06 64 ≤ 0.06 0.25 0.015 0.03 0.03 0.06 0.03 0.03 8 16 2 16 2 16 16 32 64 >64 32 64 2 16 4 32 2 128 0.12 >16 ≤ 0.12 >16 ≤ 0.12 4 C. freundiiC. koseriE. cloacae	0.06 64 ≤ 0.06 64 ≤ 0.06 0.25 ≤ 0.06 0.15 0.03 0.03 0.06 0.03 0.03 0.03 8 16 2 16 2 16 32 16 32 64 >64 32 64 64 2 16 4 32 2 128 4 2 16 ≤ 0.12 >16 ≤ 0.12 4 ≤ 0.12 0.12 >16 ≤ 0.12 >16 ≤ 0.12 4 ≤ 0.12 C. freundiiC. koseriE. cloacaeM. mo	0.06 64 ≤ 0.06 64 ≤ 0.06 0.25 ≤ 0.06 0.12 0.15 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 8 16 2 16 2 16 32 >32 16 32 64 >64 32 64 64 >64 2 16 4 32 2 128 4 32 0.12 >16 ≤ 0.12 >16 ≤ 0.12 4 ≤ 0.12 0.25 C. freundiiC. koseriE. cloacaeM. morganii	0.06 64 ≤ 0.06 64 ≤ 0.06 0.25 ≤ 0.06 0.12 ≤ 0.06 0.15 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.06 0.12 8 16 2 16 2 16 32 >32 1 16 32 64 >64 32 64 64 >64 2 16 4 32 2 128 4 32 0.25 0.12 >16 ≤ 0.12 >16 ≤ 0.12 4 ≤ 0.12 0.25 ≤ 0.12 $c. freundii$ $C. koseri$ $E. cloacae$ $M. morganii$ $S. march$	

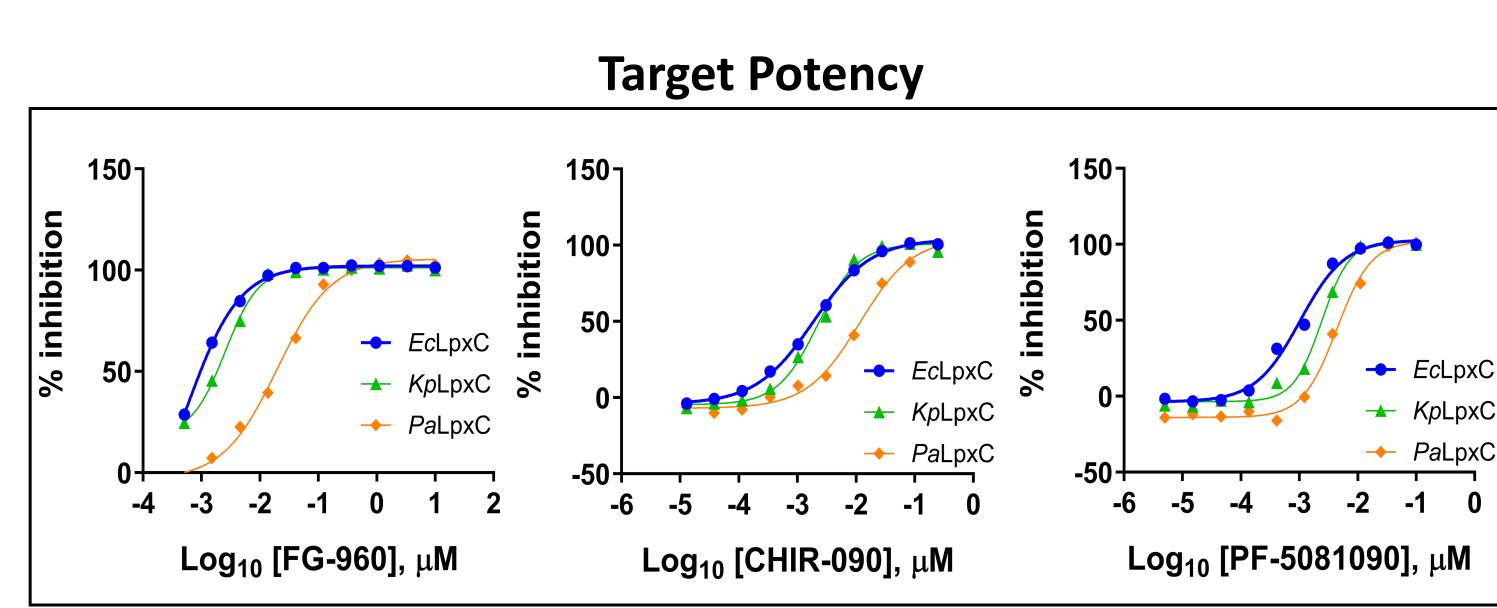

E. coli UTI89 (FG-960 MIC = 0.5 μ g/mL) was introduced via transurethral administration 24 hours prior to initiation of therapy. FG-960 was administered BID for 72 hours prior to bioburden recoveries from the urine (left), bladder (middle), or kidney (right). Ciprofloxacin was included as a comparator.

MDR strains. Pharmacokinetic studies have demonstrated dose-proportional exposures in the plasma from preclinical species, with considerable accumulation of intact FG-960 in the urinary tract. This higher localized exposure likely contributes to FG-960's strong in vivo efficacy profile, with >1-log kill achieved using either intravenous or oral administration at dose levels of 10-50 mg/kg/day in a mouse UTI model. Importantly, and in multiple preclinical models, FG-960 does not exhibit cardiovascular toxicity observed with previous hydroxamate-based LpxC inhibitors. In summary, Blacksmith is advancing FG-960 in ongoing IND-enabling studies for the treatment of UTIs caused by MDR Gram-negative bacteria.

Target Pathway and FG-960 MOA PaLpxC:FG-960 Cocrystal Structure **O-antigen** core


Frequency and Mechanism of FG-960 Resistance


Compound			Fold MIC			E. coli	ATCC 259)22	K. pneumoniae ATCC 13883			
FG-960			4X			1.83x10 ⁻¹⁰			1.84x10 ⁻⁸			
			8X			<1.83x10 ⁻¹⁰			1.35x10 ⁻⁹			
			16X			<1.83x10 ⁻¹⁰			<2.70x10 ⁻¹⁰			
ACHN-975			4X			9.14x10 ⁻¹⁰			2.05x10 ⁻⁸			
		5	8X			<1.83x10 ⁻¹⁰			2.70x10 ⁻⁹			
			16X			<1.83x10 ⁻¹⁰			<2.70x10 ⁻¹⁰			
PF-5081090			4X			1.33x10 ⁻⁸						
ГЦ- С	000109		8X			1.	33x10 ⁻⁸					
	Ciprofloxacin		4X			3.66x10 ⁻¹⁰			Not Tested			
Cipro			8X			1.10x10 ⁻⁹						
•			16X			<1.83x10 ⁻¹⁰						
		-	encing sults	MIC (µg/mL)								
Strain		LpxC	FabZ	FG-960	Fold- Change (vs WT)	CIP ^a	Fold- Change (vs WT)	TOB ^b	Fold- Change (vs WT)	MPM ^c	Fold- Change (vs WT)	
E. coli	25922	WT	WT	0.25	NA	0.016	NA	0.5	NA	0.016	NA	
es	#1	WT	A71S	2	8	0.008	2	0.5	1	0.016	1	
clones plates	#2	WT	A71V	2	8	0.008	2	0.25	0.5	0.008	0.5	
25922) FoR ^d	#3	WT	K102N	4	16	0.008	2	0.5	1	0.016	1	
25 <u>:</u> Fc	#4	WT	R100S	8	32	0.008	2	0.125	0.25	≤0.008	≤0.5	
08	46	\ \ /T	C120V		0		2			0.016	1	


K. pneumoniae BAA-1705 (FG-960 MIC = 4 μ g/mL), a blaKPC-2-producing and fluoroquinolone-resistant clinical isolate, was introduced via transurethral administration 24 hours prior to initiation of therapy. FG-960 was administered QID for 72 hours prior to bioburden recoveries from the urine (left), bladder (middle), or kidney (right). Ciprofloxacin was included as a comparator.

Role of LpxC in Gram-negative bacterial outer membrane biogenesis (adapted from Whittington et al, PNAS, July 2003), and the inhibitory mechanism of action for FG-960.

IC₅₀ assessment of FG-960 (left) and two legacy, hydroxamate-containing LpxC inhibitors, CHIR-090 (middle) and PF-5081090 (right). Each compound was evaluated against purified LpxC orthologs from E. coli (Ec), K. pneumoniae (Kp), and P. aeruginosa (Pa). IC_{50} values were calculated as follows - FG-960: 1.05, 1.40, and 21.40 nM for Ec,

A71S #8 0.016 WT ^a – ciprofloxacin; ^b – tobramycin; ^c – meropenem; ^d – FoR, frequency of resistance

P22L

G129E

WT

WT

#6

#7

TOP: Spontaneous frequency of resistance (FoR) results for FG-960, two comparator LpxC inhibitors, and ciprofloxacin evaluated against *E. coli* ATCC 25922 and *K.* pneumoniae ATCC 13883.

0.008

0.008

0.25

0.125

0.5

0.5

0.25

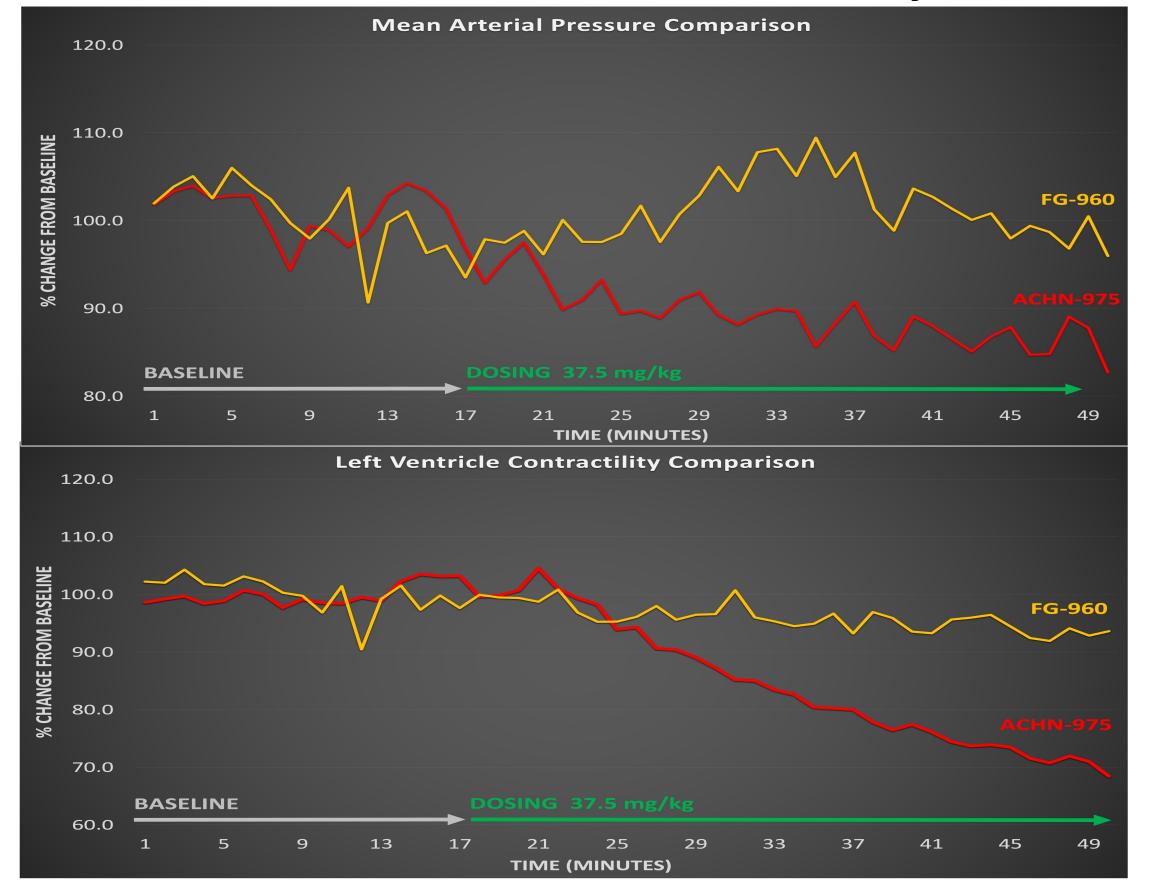
≤0.008

≤0.008

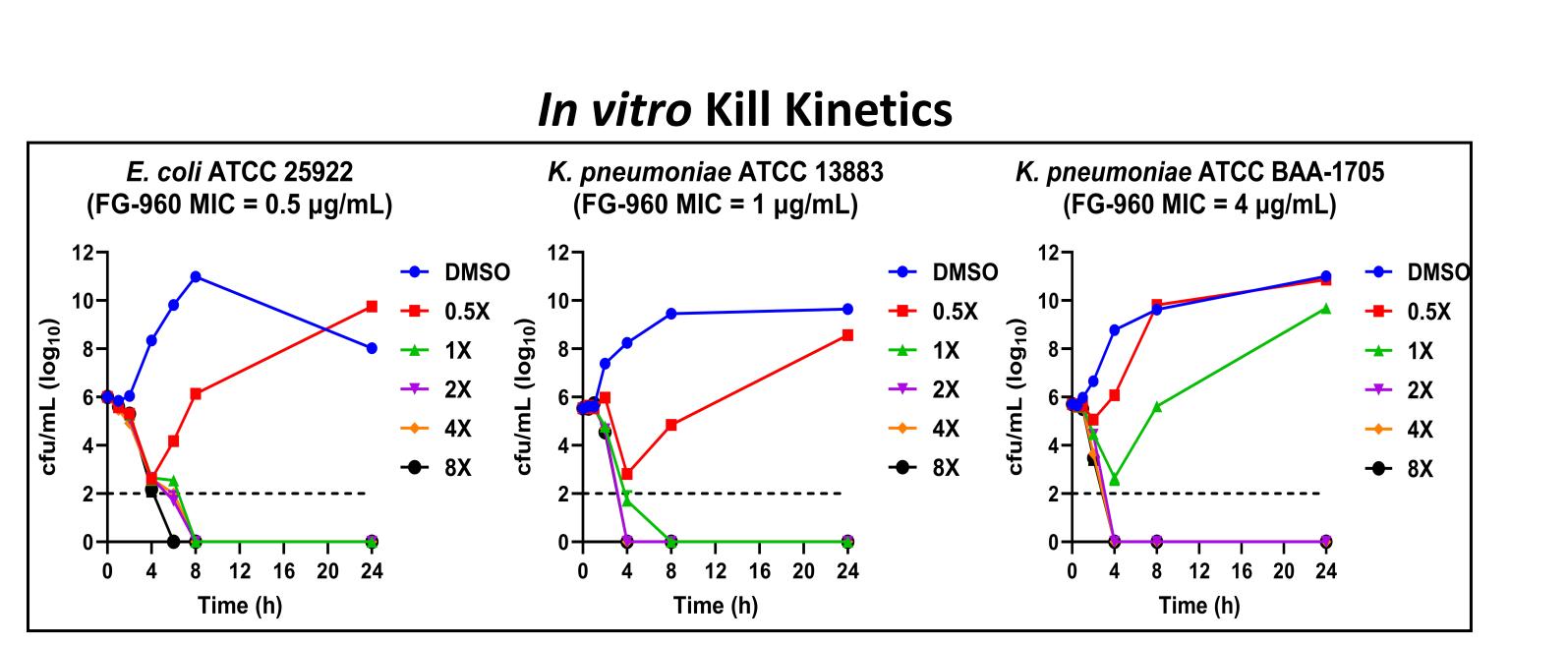
0.016

≤0.5

≤0.5


BOTTOM: Sequencing and antibiogram phenotyping of select *E. coli* ATCC 25922 spontaneous-resistant mutants recovered after FG-960 challenge in FoR studies.

In vivo Pharmacokinetics


1000-		

 \overline{E} coli NCTC 13462 (FG-960 MIC = 0.25 µg/mL), a blaCTX-M-2-producing clinical isolate, was introduced via transurethral administration 24 hours prior to initiation of therapy. FG-960 was administered BID for 72 hours prior to bioburden recoveries from the urine (left), bladder (middle), or kidney (right). Ciprofloxacin was included as a comparator.

Preclinical Cardiovascular Safety

Kp, and *Pa*; CHIR-090: 0.30, 0.6, and 11.3 nM; PF-5081090: 0.2, 0.5, and 2.2 nM.

In vitro static time-kill results with FG-960 evaluated against three different Enterobacterales target strains. Compound was added to exponentially-growing cultures of each indicated isolate at the fold-MIC concentrations specified. Recoverable bioburdens were quantified via viable plate counting at 0, 1, 2, 4, 6, 8, and 24 hours post-compound addition.

Kinetic recovery of intact FG-960 from Sprague Dawley rat urine (n=4) after IV administration of 6 mg/kg (green bars, circles) and 60 mg/kg (blue bars, squares) doses. Urine was recovered via metabolic cage collection. For reference, the anticipated MIC_{90} for all target uropathogens is shaded in red.

Anesthetized rat model data demonstrating differentiation of FG-960 (yellow) from ACHN-975 (red). Both mean arterial pressure (top panel) and left ventricle contractility (bottom panel) were reduced both preclinically and in a Phase 1 clinical trial by ACHN-975, but no significant changes in either parameter were observed when FG-960 was administered at 37.5 mg/kg.

Acknowledgements

We are grateful to Swapna Vaddi and David Corbett (Evotec), as well as to Karen Shaw, Lynn Silver, Mike Barbachyn, Seth Cohen, Lloyd Payne, John Rex, Peter Warn, and Mark Whittaker (Blacksmith SAB) for their experimental and technical support. We also thank CARB-X for prior financial support. This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services, under Contract No. 75N93022C00060.